In vivo selection of combinatorial libraries and designed affinity maturation of polydactyl zinc finger transcription factors for ICAM-1 provides new insights into gene regulation.
نویسندگان
چکیده
Zinc finger DNA-binding domains can be combined to create new proteins of desired DNA-binding specificity. By shuffling our repertoire of modified zinc finger domains to create randomly generated polydactyl zinc finger proteins with transcriptional regulatory domains, we developed large combinatorial libraries of zinc finger transcription factors (TFZFs). Millions of TFZFs can then be simultaneously screened in mammalian cells. Here, we successfully isolated specific TFZFs that significantly positively and negatively modulate the transcription of the ICAM-1 gene in primary and cancer cells, which are relevant to ICAM-1 biology and tumor development. We show that TFZFs can work in a general and in a cell-type specific manner depending on the regulatory domain and the zinc finger protein. We show that a TFZF that interacts directly with the ICAM-1 promoter at an overlapping NF-kappaB binding enhancer can overcome or synergistically cooperate with NF-kappaB induction of ICAM-1. For this TFZF, rational design was used to optimize the binding of the zinc finger protein to its DNA element and the resulting TFZF demonstrated a direct correlation between increased affinity and efficiency of target gene regulation. Thus, combining library and affinity maturation approaches generated superior TFZFs that may find further applications in therapeutic research and in ICAM-1 biology, and also provided novel mechanistic insights into the biology of transcription factors. Transcription factor libraries provide genome-wide approaches that can be applied towards the development of TFZFs specific for virtually any gene or desired phenotype and may lead to the discovery of new genetic functions and pathways.
منابع مشابه
Promoter-targeted phage display selections with preassembled synthetic zinc finger libraries for endogenous gene regulation.
Regulation of endogenous gene expression has been achieved using synthetic zinc finger proteins fused to activation or repression domains, zinc finger transcription factors (TFZFs). Two key aspects of selective gene regulation using TFZFs are the accessibility of a zinc finger protein to its target DNA sequence and the interaction of the fused activation or repression domain with endogenous pro...
متن کاملZinc finger transcription factors designed for bispecific coregulation of ErbB2 and ErbB3 receptors: insights into ErbB receptor biology.
Signaling through the ErbB family of tyrosine kinase receptors in normal and cancer-derived cell lines contributes to cell growth and differentiation. In this work, we altered the levels of ErbB2 and ErbB3 receptors, individually and in combination, by using 6-finger and 12-finger synthetic zinc finger protein artificial transcription factors (ATFs) in an epidermoid squamous cell carcinoma line...
متن کاملPhenotypic alteration and target gene identification using combinatorial libraries of zinc finger proteins in prokaryotic cells.
We have developed a method with prokaryotic organisms that uses randomized libraries of zinc finger-containing artificial transcription factors to induce phenotypic variations and to identify genes involved in the generation of a specific phenotype of interest. Combining chromatin immunoprecipitation experiments and in silico prediction of target DNA binding sequences for the artificial transcr...
متن کاملToward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks.
To create a universal system for the control of gene expression, we have studied methods for the construction of novel polydactyl zinc finger proteins that recognize extended DNA sequences. Elsewhere we have described the generation of zinc finger domains recognizing sequences of the 5'-GNN-3' subset of a 64-member zinc finger alphabet. Here we report on the use of these domains as modular buil...
متن کاملA bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions.
We have developed two bacterial one-hybrid systems for interrogating and selecting zinc finger-DNA interactions. Our systems utilize two plasmids: a zinc finger-plasmid containing the gene for the zinc finger fused to a fragment of the alpha subunit of RNA polymerase and a reporter plasmid where the zinc finger-binding site is located upstream of a reporter gene-either the gene encoding the gre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 341 3 شماره
صفحات -
تاریخ انتشار 2004